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A mechanism is suggested to explain the information processing abilities of 
simple natural brains, which, by experimental evidence, display behavior like 
chaotic dynamical systems while at rest. The Lorenz system of equations is dealt 
with as a case study, and a comparison of the suggested mechanism with the 
standard theory of neural networks is made. 
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1. I N T R O D U C T I O N  

We are concerned in this paper with neural networks considered from a 
dynamical systems point of view. Many neural networks can be modeled as 
dynamical systems, and their computational process is the evolution of an 
input-- the initial s tate-- to a stable fixed point or limit cycle--the output 
or result of the computation (see, e.g., refs. 13, 14, 20, and 21). Networks 
currently used and studied are autonomous, dissipative, and nonchaotic 
systems--phase space is contracted under the evolution. 

Such systems are, for experimental and theoretical reasons, inadequate 
to give a satisfactory model of real, biological brains. From a theoretical 
point of view, it seems unreasonable that just the setting of a particular 
state (the input) should lead to an asymptotic state (the output) in which 
the system would then stay indefinitely. Such a system would be unable to 
forget and would in some sense be unable to prepare itself for new input. 
It would need to be reset from the outside for the next computation and 
could not be called "alive" in any sense of the word. On the experimental 
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side, even the brains of relatively primitive animals (like invertebrates; see, 
e.g., Miptsos et aL ~18)) display dramatically different behavior: When at 
rest, i.e., when no inputs are given, such brains show frantic activity. 
Measurements of power spectra and correlation dimensions of neuronal 
activities suggest that a good model of such a system must allow for 
chaotic dynamical behavior, especially "at rest. ''~17'22) Inputs typically 
transform the system into periodic oscillations/4' lO,~1) 

There are efforts to modify traditional logical neural networks to make 
them compatible with some of the additional features observed in real 
biological brains, e.g., periodic oscillations and low firing rates/1'5~ The 
networks introduced in these references are possibly examples for the 
general scenario which we discuss below. 

There is growing consensus that chaos is actually an essential 
ingredient in the dynamics of biological neural nets .  (3'19'22'23'25) Actually, 
chaos may just be a generic phenomenon related to the high dimension of 
phase space; the crucial question is how the system will respond to inputs. 
If the rest state of the system is on, say, a strange attractor, then it does 
not make sense to consider initial values as inputs. Rather, an input will be 
an outer force which acts temporarily on the system. While this force is 
active it causes a structural change in the phase diagram of the system, and 
so the system may well settle in a fixed point or on a limit cycle (whose 
location will specifically depend on the direction and size of the input). 
Upon removal of the outer force, the network relaxes and returns to its 
dynamic rest state, the strange attractor. 

We suggest that a resting biological neural network does not display 
many stable steady states (like, e.g., the Hopfield net for symmetric connec- 
tions(13)), but will typically settle on a complex chaotic attractor. Even 
though one may have sensitive dependence on initial conditions, the system 
is unable to distinguish initial values, because they are all pulled to the 
same set. However, structural changes in the phase space may well be 
specific to the applied force and thus lead to a fixed point or limit cycle. 
Therefore, outer forces, not initial data, must serve as inputs. 

Suppose the model consists of N neurons, and let x = (Xx,..., XN) be the 
vector of postsynaptic potentials (neural states as indicated by action 
potential frequencies); then the undisturbed system would be modeled by 
a system of differential equations 

~ = V ( x )  (1) 

Assume next that a sensory input, represented by a unit vector y ~ S N - 1  
with strength ~ >~ O, is active during a time interval [t~, t2]. Equation (1) 
changes into 

~: = F(x) + ~ -y �9 ZEta. ,:1 
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where Zt,l,,2j denotes the characteristic function of the time interval 
[tl,  t2]. For small ~, the vector field on the right will certainly change 
while the input is active, but the attractor will presumably be stable enough 
to persist structurally--the neural system simply does not recognize small 
inputs. For large ~, there are two possibilities: The first is that there may 
be directions y which are still not "recognized"--the chaotic attractor is 
distorted, but not destroyed. One could say that the system is not designed 
to "see" y. The second is that the attractor may undergo a structural 
change such as a deformation into a limit cycle or a stable fixed point. The 
location of the fixed point (or limit cycle) will depend on y and ~, and so 
the system gives a clear "response" to ,y. 

2. A CASE STUDY:  THE LORENZ S Y S T E M  

The Lorenz equations are a famous system of nonlinear ordinary 
differential equations, suggested by Lorenz in 1963(16): 

dx 
- - =  - ~ ( x -  y) 
dt 

@ 
- -  = - y  + r x  - x z  (2) 
dt 

dz 
- - =  - b z  + x y  
dt 

This system has been extensively studied, especially the structure of its 
attracting sets. For details, we refer the reader to the book by Sparrow (24) 
or to the article by Lanford. (15) We begin our study by listing some of the 
crucial properties of the system. 

(a) Every trajectory enters a compact invariant set in finite time. 
This follows because if we define 

u ( 0  : =  x ( t ) :  + y ( t )  2 + [ z ( t )  - r -  ~ j 2  

then there exist positive constants cl and Cz such that 

t~ ~< - c l  u + c2 (3) 

The structure of the system of equations is essential for this property: Note 
that there are no terms of third order (like xyz ,  or x2y)  if we multiply the 
three equations by x, y, and z, respectively, and add up. 
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(b) The system contracts phase space, because 

~xx+~yy +~z--- div F(x, y, z ) =  -(~r + b +  1) 

and cr and b are nonnegative. 
The behavior of solutions to (1) is strongly dependent on the value of 

the parameters b, o-, and r. Typical values for which the famous Lorenz 
attractor exists are b = 8/3, cr = 10, and r = 28. Properties (a) and (b) imply 
that every solution trajectory tends toward an attracting set A. This set is 
of Lebesgue measure zero in ~3 (actually, it is of reduced Hausdorff 
dimension), and its structure depends on the parameters b, g, and r. For  
the above values, the attractor is the famous Lorenz "butterfly." 

Even though they are unstable, the fixed points of the system (1) 
play a pivotal role for the asymptotic behavior of solutions. These fixed 
points are Q = ( 0 , 0 , 0 ) ,  Pl=([b ( r -1 ) ]  1/2, [b(r-1)]l/2, r -1) ,  and 
P2 = ( -  [b(r-  1)] 1/2, - [b(r-  1)] 1/2, r -  1). For  the given values of the 
parameters a, b, and r, all these fixed points are unstable. Q has a two- 
dimensional stable and one-dimensional unstable manifold, whereas P1 and 
P2 have two-dimensional unstable and one-dimensional stable manifolds. 
Roughly speaking, the Lorentz attractor exists as a connection from the 
two-dimensional unstable manifold of P1 to the one-dimensional stable 
manifold of P2, and vice versa (for more details see refs. 12 and 24). The 
result is that a trajectory will oscillate back and forth between the unstable 
manifolds attached to P~ and P2. (A typical trajectory moves outward in 
a spiral near the unstable manifold of P1 until it is attracted near the stable 
manifold of P2 toward P2. It then spirals outward from P2, until the stable 
manifold of P~ begins to attract it, and so on. In a neighborhood of P1 and 
P2 this behavior can be predicted via linear stability analysis, (~s) but far 
away from the fixed points the system is much harder to predict. The 
attractor is called strange because all evidence suggests that it is not a limit 
cycle or quasiperiodic attractor; it displays sensitive dependence on the 
initial conditions, at least on the computational and heuristic level. 
However, to our knowledge, it has never been rigorously shown that the 
Lorenz attractor is not just a limit cycle with a very long period. 

Be that as it may, the issue is of little relevance for our present objec- 
tive. The important feature is that P~ and P2 are actually attracting in some 
sense, but due to their instability, the system is unable to "decide" between 
them. This inability is chaotic inasmuch as the amount  of time a trajectory 
spends near either point appears to be random, even after the trajectory 
has relaxed toward the attractor for a very long time. Experiments suggest 
that in the long run, a trajectory will spend about half of its time on either 
side of the plane x + y = 0. 
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We suggest that  the Lorenz  system can be interpreted as a neural  
ne twork  "at  rest." More  specifically, the chaot ic  mo t ion  a long the Lorenz  
a t t rac tor  is the system state w i t h o u t  external inputs; the system is ready to 
process informat ion  in the sense that  it can make  a decision between either 
side of the plane x + y = 0. 

Suppose that  an external input  is active during the interval [t~, t2]. 
For  simplicity, we model  an input  as a constant  impulse in the direction 
u =  (A, B, C), lluH = 1, with s trength c~>0, i.e., the system under  cons ide ra -  
t ion is 

2 = o ( y  - x )  + ~AxEt~. ,2J 

;2 = r x  - y - x z  + ~BxEt~" ~21 (4) 

2 = - - b z  + x y  + ~CzEt~. r2j 

As an example,  let A = 0 ,  C = 0 ,  and B =  1 or - 1 .  Fixed points of  the 
per turbed system must  then satisfy the equat ions x = y ,  z = x 2 / b ,  

( r - 1 )  x - x 3 / b  = _+c~. Fo r  c~ = 0, we obtain  the hyperbol ic  fixed points of  
the ord inary  Lorenz  system. Their  x values are given as intersections of the 
po lynomia l  p ( x )  = ( r -  1) x - x 3 / b  with the x axis and lead to the x values 
of Pl  and P2. 

For  the genuinely per turbed  system (c~ > 0), we first focus on the case 
A = 0, B = 1, C = 0. To  get the x values of  Q, P~, and P2 ,  we have to solve 

x ( r  - 1 ) - -  x 3 / b  + ~ = 0 

If we set c = r -  1 and c% = 2 / 3 c ( b c / 3 )  1/2, then the equat ion  has three real 
solutions for 0 ~ ~ < ~o, two real solutions for c~ = c%, and one real and two 
complex conjugate  solutions for ~ > % (see Fig. 1). For  r = 28 and b = 8/3, 
we find c%= 3 6 . x / 6 ~  88.18. 

Let Xo, x l ,  and x 2 be the x coordinates  of  Q, P~, and P2, respectively 
(these fixed points  depend now of course on ~, but we suppress this 
dependence in the notat ion) .  As is clear from Fig. 1, Q and P2 approach  
each other  as ~ increases, merge at ~ = ~o, and d isappear  for ~ > %.  It  can 

l p(x)=-x31b + x(r - i )  

Fig. l 
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be shown analytically that Q(%)=  P2(c%) is unstable, but Pl(eo) is stable 
(we present this calculation, which was done by Pauline van den Driessche, 
in the Appendix). In fact, our numerical experiments suggest that P1(c~) 
becomes stable for values of e much smaller than eo (and Q and P2 are 
unstable for 0 ~< ~ < %). 

If A = 0 ,  B =  -1 ,  and C = 0 ,  P2(e) becomes the stable fixed point, 
while PI(~) and Q(e) are unstable and merge at :~ = c% (they vanish for 
0~ > ~o). 

Of course, this linear stability analysis of fixed points does not imply 
that solution trajectories will always converge to the stable fixed point (the 
stability analysis is valid only in sufficiently small neighborhoods of fixed 
points, because we are dealing with a nonlinear system). However, our 
numerical evidence suggests that the stable fixed point becomes, for 
within reasonable bounds, a global attractor for the system. This appears 
to be true as well when A # 0  and C # 0 ,  as long as ]B] is large enough: 
The sign of B determines the "choice" of the system between P~ and P2. 

Remarks. Of course, the stable fixed point depends on the input; 
however, for a wide range of inputs, P~ remains in the range x + y > 0, 
while P2 remains in x +  y < 0 .  Therefore, the system can answer the 
question: "Is the y coordinate of the input positive or negative?." This is a 
very limited information processing ability, but not too much should be 
expected from a system with only three neurons. 

Also, as soon as the input is removed, the system returns to the 
Lorenz attractor. In order to keep the result in memory, the fixed point P~ 
or P2, whichever was the result of the calculation, would have to be fed to 
a more conventional neural network (a perceptron, for example) which 
would use the outputs of the perturbed Lorenz system as inputs. 

3. A NEURAL NET MODELED BY THE LORENZ SYSTEM 

It is relatively easy to design a 3-neuron network whose frequencies of 
action potentials satisfy the Lorenz system of equations. Such a net is 
shown in Fig. 2. The synaptic connections marked III and IV are examples 
of axoaxonal synapses. This situation is actually observed in real biological 
networks. (8'9) The enlarged picture is roughly as shown in Fig. 3. 

It is experimentally observed (2'7) that the synaptic effect of the synaptic 
connection 1 on the target neuron is in this situation dependent on the 
modulatory effect of connection 2. This can be used to implement the quad- 
ratic terms on the rhs of (2), and it is a mechanism which implies nonlinear 
feedback inside the system. The other terms in (2) are of more conventional 
origin: Leakage ( - -~ rx , -y ,  and -bz) and connections with constant 
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connection strength (I, with connection strength ~r, and II, with strength r, 
both excitatory). 

In the absence of external inputs, the system always remains inside a 
bounded domain in phase space, as follows from (3). The specific design 
which enables the system to perform this "balancing act" is the fact that the 
quadratic terms compensate each other in some sense [such that (3) 
holds]; they are divided in just the right way into presynaptic facilitation 
and presynaptic inhibition. No sigmoid nonlinearity is necessary to prevent 
"blowup." 

Fig. 3 
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We suggest that graphs like the one in Fig. 3 and the observation of 
the compensation property just mentioned should be used to design more 
complicated neural networks modeled by systems of nonlinear ordinary 
differential equations. We plan to address this idea in future work. 

4. NUMERICAL EXPERIMENTS 

Figures 4-11 show plots of approximate solutions to the Lorenz 
system. The solution trajectories are projected into the plane x = y. The 
line z = 0 is the horizontal line on top, and the z axis points down in the 
middle of each figure. In every experiment, an initial value (Xo, Yo, Zo) was 
chosen at random. The unperturbed system was solved with an arbitrary 
but fixed number of iteration steps N. At the end of this procedure, the 
perturbation was added [vector (A, B, C), multiplied by strength ~] and 
another M iteration steps were done. We list Xo, Yo, and z 0 with most 
figures, as well as N, M, A, B, C, and a. The numerical method used was 
a simple improved Euler scheme with step size 0.004. 

APPENDIX.  LINEARIZED STABILITY ANALYSIS FOR THE 
PERTURBED FIXED POINTS 

First, we briefly present the well-known stability analysis of the fixed 
points of the unperturbed Lorenz system. The Jacobian matrix of the rhs 
of (2) is 

J =  r z - 1  

F i g .  4. 

initial value: 

x0=YO=-25, z0=20 

A=C=0 N = i000 

B= 4 M = 3OO0 

Result: Pt 

I 

I n i t i a l  v a l u e s :  x o = Yo = - 2 5 ,  z o = 20. H e r e  A = C = 0, B = 4, ct = 10, N =  1000, a n d  

M =  3000. R e s u l t :  P l .  



I n f o r m a t i o n  P r o c e s s i n g  b y  C h a o t i c  D y n a m i c a l  S y s t e m s  5 5 7  

........ 22--_.[-"\ 4" ~ ' - .  ~ a ~ -  ~ 

.' ....,:,:~- " f l ! , l f  ~,-  , ............... ....... ',,' . . . . . . . . .  o . . . .  , ~<=~o  
, , ' , < , ' ~ l ~ < ' ~ , ' , ~  . . . . . . . .  " : ._- : -  , . . . . . .  

, ; ~ ,  , . ,  , ,....-~,~,,., , , ! ,  ,-,, ! ,  , t i ~  . . . . . . . . .  ooo 

........ ~ . . . . . . . .  :::-.7%~ . . . . .  ....'.'~" / 

Fig.  5. Init ia l  va lues:  xo=Yo=20,  Zo=17. A = C = 0 ,  B=4 ,  a=10 ,  N = M = 2 0 0 0 .  
Result:  P~.  

....... _ ~ . s ~ _ ~ _ . %  \ ~' . . . . . .  ~-. 

It~ ~'2,'~ ~J~,/.,.~ ,,tr L:.I,, :f,, 'r 

(same initial values) 

A=-7, B=-I4, C=6, ~=14 

N=4000 

M=2000 

Result: P2 

Fig.  6. S a m e  init ial  va lues .  A = - -7 ,  B = - 14, C = 6, ~ = 14, N = 4000 ,  M = 2000.  Result:  Pz. 

i 
i 

/ .--z="_--:';.. .  ',.),. , 

J 

5 

(same initial values) 

A -7, B 14, C=5 

~=15 

N-4000, M=2000 

Result: P1 

Fig.  7. S a m e  init ial  va lues .  A = - 7 ,  B = 14, C = 5, ~ = 15, N =  4000 ,  M =  2000.  Result:  P~. 
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A=0, 8=-3, C=0 

(same initial ~=I0 

values) N=0 (immediate input) 

M~4000 

Result: P2 '1, 

",~2~ .... ?- . . . . . . . . . . . . . .  

Fig. 8. Same initial values. A = 0, B = - 3 ,  C = 0, ~ = 10, N = 0 ( immediate  input),  M = 4000. 
Result: P2. 

[ I 2 ~ )  

~ -~-,2'. ~ ,  
"%~i:?~;~,i',, ,, R~,.it: Pz 

Fig. 9. Here A = - 7 ,  B = - 1 4 ,  C = 6, ~ = 14. Result: P2. Co mpa re  Fig. 6 - - s a m e  input. 

A=0, 8=2, c=O, ~,=8 
N=O, M=4OO0 

~. Result: P1 
~ _ ~ ,  

Fig. 10. Here  A = 0, B =  2, C =  0, ~ = 8, N = 0 ,  M =  4000. Result: P1. W e a k  input  implies 
s low convergence.  
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I,I 

A=7, B=I4, C=3 
~=15 

Result: PI 

Fig. 11. HereA=7, B=14, C=3, c~=15. Result:P~. 

For  any of the fixed points Q, P1, or  P2 we have y = x, and z = x2/b, so 

J= r-x2/b --1 

X X 

For  x = 0 and r > 1, one of  the three (real) roots  of the characteristic poly- 
nomial  of  this matrix is positive, so we have a one-dimensional  unstable 
manifold for Q. For  x =  + ( -  ) [ b ( r - 1 ) ]  1/2 (corresponding to P1 or P2) 
and r = 28, r = 10, b = 8/3, the characteristic polynomial  has a complex 
conjugate pair of  roots  with positive real parts, so we have a two- 
dimensional  unstable manifold. 

For  the perturbed system, we focus on the case A = 0, B = 1, C =  0, 
and a = a0. Then there are two fixed points (Q and P2 are identical). With 
c = r -  1, we find the x values of  these fixed points by solving the equat ion 

x 3 - 3  x - 2  = 0  

The solutions are xl = 2(bc/3) 1/2 and x2 = -(bc/3) ~/2, and we claim that P1 
is stable, whereas P2 is unstable. The Jacobian matrix for the perturbed 
system is the same as for the unperturbed system. Inserting x2 into 
the matrix, we can calculate explicitly the roots  of the characteristic 
polynomial  

E c ] ) f l+(b+a+l )22+ ~ ( b - 2 o - ) + b ( a + l )  2 

822/66/1-2-36 
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All of them are real, and one is positive. For  x j, the characteristic 
polynomial is 

2 3 + ( b + ~ + l ) 2 Z +  b ( ~ + l ) + ~ ( o + 4 b )  2+3obc 

and the explicit calculation of the roots is harder. However, we can use the 
Routh-Hurwitz  criterion (6) to show that all roots must have a negative real 
part: Indeed, for c = 27, ~r = 10, and b = 8/3 we readily check that 

(b+cr + l)Ib(o + l)+ 3 (o +4b)]> 3abc 

and by Routh-Hurwitz,  this implies stability of the fixed point. 
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